The SZ effect: Surveys and Cosmology

Michele Limon Columbia University

Structure Formation

- Standard ∧CDM Model
- Box Size 43 Mpc³
- 30 > z > 0

In typical structure formation scenarios, low mass clusters emerge in significant numbers at z~2-3

Group/Cluster Formation

- Standard ∧CDM Model
- Box Size 4.3 Mpc³
- 30 > z > 0

Galaxy Clusters

Galaxies

 $M_{\rm gal} \approx 0.02 M_{\rm tot}$

Early types

 $N_{\rm gal} \approx 10 - 1000$

Poor groups - rich clusters

Gas

 $M_{\rm gas} \approx 0.1 \ M_{\rm tot}$

Heated by infall

$$T_{\rm gas} \approx (1\text{-}15) \ keV$$

Dark Matter

$$M_{\text{tot}} \approx 10^{14} - 10^{15} \, Solar \, Masses$$

$$R \approx 1 \; Mpc$$

Why Clusters

• Theory:

Clusters relatively simple objects. Evolution of massive cluster abundance determined by gravity. Clusters straddle the epoch of dark energy domination 0<z<3.

Why Do We Need Yet Another Cosmological Probe?

- Degeneracies differ from CMB, SNe, Galaxies
- Systematics are different
- Unique exponential dependence
- Modelability

How to find Clusters

- Optical/IR imaging: Early type galaxy colors (e.g., darkCAM, DES, ISCS, LSST, Pan-starrs, RCS1&2,...)
 - Good contrast
 - Relation to mass
- X-ray imaging: L_x from hot gas (e.g., review by Rosati et al. 2002, XCS)
 - Good contrast
 - T tightly correlated to mass
 - All-sky surveys shallow
 - Deeper serendipitous limited area, inhomogeneous
- Weak lensing: shear/aperture mass (e.g., DUNE, JDEM)
 - Direct relation to mass
 - Projection effect
- SZ Survey

Sunyaev-Zel'dovic Effect

In the Rayleigh -Jeans Regime:

$$\frac{\Delta T_{\rm SZ}}{T_{\rm CMB}} = -2 \frac{\sigma_{\rm T} k_{\rm B}}{m_{\rm e} c^2} \int n_{\rm e} T_{\rm e} dt$$

Thermal & Kinetic SZ Effect

For T_{cmb} = 2.726K λ_{-} = 2.34 mm ν_{-} = 128 GHz λ_{o} = 1.38 mm ν_{o} = 218 GHz λ_{+} = 0.80 mm ν_{+} = 370 GHz

Thermal and kinetic SZ effect for a cluster with a peculiar velocity of 500 km s⁻¹ (Carlstrom et al. 2002).

SZ Effect: why it is so nice

SZ contours are 0.75 µK and X-ray scales are the same.

SZ and X-ray maps (insert). Mohr 2002

- 1) The very distinct spectral signature
- 2) Measures the total thermal content of the cluster
- 3) Temperature decrement more or less redshift independent
- 4) Less susceptible to complicated cluster substructure, core physics (proportional to density and not density squared as in Xrays)

SZ Spectral Signature

 $M = 10^{15} M_{\odot}$ T = 9 keVz = 0.43

 $M = 2 \times 10^{14} M_{\odot}$ T = 3 keVz = 0.43

Potential for different methods to constrain "w"

Cluster Surveys are complementary to already well established cosmological probes

Sensitivity of Cluster Redshift Distribution to Dark Energy Equation of State

Increasing **w** keeping Ω_E fixed has the following effects:

- It decreases volume surveyed
- It decreases growth rate of perturbations

Clusters Surveys

- Interferometers: \sim 10-100 sq. deg.
 - Arcminute MicroKelvin Imager (AMI) (in operation) first image: astro-ph/0509215
 - 10 new antennas (3.7m) + Ryle Telescope (12.8m), 13.5 18 GHz,
 - Array for Microwave Background Anisotropy (AMIBA)
 - 19 antennas (0.3m), 90 GHz, Mauna Loa Hawaii
 - SZ Array (in operation)
 - 8 antennas (3.5m), 30 GHz + 90GHz follow-up, OVRO + BIMA = CARMA
- Bolometer arrays: ~100-4000 sq. deg.
 - ACBAR: 4 band-4element array at
 - BOLOCAM: 150 element array
 - APEX: ALMA prototype, 300 element array
 - ACT: Atacama plateau, 3 x 1000 element array Cerro Toco (Chile) (in operation)
 - SPT: 10m dish, 1000 element array
- Planck: \sim 40000 sq. deg. = all-sky
 - ~10,000 clusters

South Pole (in operation)

CSO Mauna Kea (in operation)

Llano de Chajnantor (Chile) (in operation)

South Pole (in operation)

L2 launch 2008/2009

AMI

Sub-array	AMI-SA	AMI-LA	
Primary dish diameter	3.7 m	12.8 m	
Antenna efficiency	0.75	.067	
Number of antennas	10	8	
Number of baselines	45	28	
Range of baseline lengths	4 – 20 m	18 – 120 m	
Primary beam (FWHM at 15 GHz)	18'	5.5'	
Observing frequency	13.5 – 18 GHZ		
Effective Bandwidth	4.5 GHz		
Number of frequency channels	6		
Bandwidth of each freq. channel	0.75		
System temperature (zenith)	25 k		
Polarization measured	I + Q		
Site	MRAO, Cambridge UK		
Flux sensitivity	30 mJy s ^{-1/2}	3 mJy s ^{-1/2}	

AMIBA

AMiBA Spec							
Dual-channel receiver MMIC; L and R			Platform	6 m configurable; carbon fiber			
Operation	n frequency	ency 86-102 GHz		Correlator	analog (bandwidth 16 GHz)		
Site		Mauna Loa, Big Island, Hawaii (3400 m in elevation)			n in elevation)		
Mounti	ng system	Hexapod ($\pm 30^{\circ}$ in polarization; 30° - 90° in electrons				90° in elevation)	
7-element (2006-2008)							
Antenna	Antenna 60-cm Cassegrain; carbon fiber		Sy	nthesized resolution		6 arcmin	
FOV	23 arcmin		Observation type		pe	targeted	
13-element (2009-)							
Antenna	a 120-cm Cassegrain; carbon fiber		Sy	Synthesized resolution		2 arcmin	
FOV	11 arcmin			Observation type		targeted and survey	

SZA

http://calvin.phys.columbia.edu/group_web/sza.html

http://astro.uchicago.edu/sza/

ACBAR operates on the 2m Viper Telescope

Chopping tertiary mirror

Skirt reflects primary spill-over to sky.

Ground shield blocks emission from EL< 25°.

Large AZ chop (~3°) + small beams (~4-5′)

Panel lowers for low-EL observations

= broad ℓ -space coverage (~75 < ℓ < 3000) *and* sensitivity to clusters over a wide redshift range

http://cosmology.berkeley.edu/group/swlh/acbar/

Bolocam

- Observes at Caltech Submillimeter
 Observatory (10.4 m dish)
- Hexagonal array of 144 bolometers
- Array has a 7.5' field-of-view with individual beam sizes of 30" FWHM
- Sensitivity from the ground limited by temporal water vapor fluctuations
- False detection rate is non-negligible

http://www.cso.caltech.edu/bolocam

ACT: Atacama Cosmology Telescope

- 6 Meter Aperture
- Low Ground Pickup (< 20µK dc)
- No Moving Optics

- Remote Controlled
- Flexible Focal Plane
- Near the ALMA Site

APEX-SZ: Atacama Pathfinder Experiment

UC Berkeley/LBNL, MPI-Bonn/Munich, Cardiff

- 16,500 feet in Chilean Andes.
- 12m on-axis ALMA prototype

Berkeley SZ Receiver:

- 330 Bolometer array
- 25% telescope time
- Could discover 4000 Clusters/2yrs
 - Mass limit > $4x10^{14} M_0$
- First Light Fall 2004
- Observations in progress

SPT: South Pole Telescope

First light achieved with the 10m South Pole Telescope, February 16, 2007.

- •Maps of Jupiter made, showing telescope and optics working as designed.
- Plan to do 4,000 sq. degree survey at 90, 150 and 220 GHz at ~ arc minute resolution.

The SPT is a collaboration between the U of Chicago, UC Berkley, Case Western Reserve University, U of Illinois, and Smithsonian Astrophysical Observatory

How many clusters?

Name	Frequency (GHz)	Beam FWHM (arcmin)	Noise (μK/beam)	S/N=5 (deg ⁻²)	Total
AMI	15	1.5	8	16	~150
SPT	150	1	10	11	~40000
	220	0.7	60		
	275	0.6	100		
ACT	145	1.7	1.7	40	~4000
	225	1.1	4.8		
	265	0.93	7.8		
Planck	143	7.1	6	0.35	~10,000
	217	5	13		
	353	5	40		

Clusters at high z

~100s of Planck clusters at z>1 (unresolved)

~1000s of SPT clusters at z>1

Summary

- Upcoming large yield cluster surveys would unveil a new era of doing cosmology with clusters. It has the promise to become 4th pillar of precision cosmology along with CMB, SNe and weak lensing.
- These surveys provide us an opportunity to probe the enigma of dark energy with high precision, while at the same time probing the high I structure of the CMB

Sunyaev-Zel'dovic Effect

PolarBear

Ground-Based 3 meter Telescope at White Mountain CA
Characterize E-modes
Search for B-modes

Why Clusters

SZ Effect: Equation

In the Rayleigh
-Jeans Regime:

$$\frac{\Delta T_{\rm SZ}}{T_{\rm CMB}} = -2 \frac{\sigma_{\rm T} k_{\rm B}}{m_{\rm e} c^2} \int n_{\rm e} T_{\rm e} dl$$

- The SZ temperature is a line-of-sight pressure integral of electron density $(n_{\rm e})$ and gas temperature $(T_{\rm e})$.
- The SZ temperature decrement is redshift-independent: When the CMB photons interacted with the cluster, $T_{\rm CMB}(z)$ was hotter and this compensates for cosmological dimming.

Why Clusters

Why Clusters

- SZ effect ideally suited for cluster surveying
 - Efficient at high z
 - Roughly uniform mass selection out to z>1
 - Expectations 2007-2010: 10s => 1000s @ z>1
 - o Interferometers ~ 100 (~10% at z>1)
 - o Bolometer cameras $\sim 1,000 10,000 \ (\sim 10\% \ at \ z>1)$
 - o Planck $\sim 10,000$ all sky ($\sim 1\%$ at z>1)